Lente esférica
É um corpo transparente com duas faces esféricas ou uma face esférica e outra plana.
Observe na foto 1 as lente biconvexa e plano-convexa. Na foto 2, as lentes são bicôncava e plano-côncava. As lentes da foto 1 apresentam as bordas finas e as da foto 2, as bordas espessas.
Foto 1
Foto 2
Seja n2 o índice de refração do corpo transparente (por exemplo, vidro) e n1 o índice de refração do meio onde o corpo transparente está imerso (por exemplo, ar). No caso mais comum (n2 > n1), as lentes de bordas finas são convergentes e as lentes de bordas espessas são divergentes.
Os raios e luz que emergem das lentes passam efetivamente por um ponto do eixo principal (foto 3) e através de prolongamento (foto 4). Este ponto é chamado foco principal imagem e é indicado por F’.
Foto 3
Foto 4
Nas fotos 5 e 6 e os esquemas nos mostram que os raios de luz que emergem paralelamente ao eixo principal, incidem passando por um ponto F do eixo principal, denominado foco principal objeto. O raio incidente passa efetivamente nas lentes convergentes e por prolongamentos nas lentes divergentes.
Foto 5
Foto 6
Duas outras lentes completam o conjunto de lentes esféricas: a lente côncavo- convexa (de bordas finas) e a convexo-côncava (de bordas espessas).
Vimos que no caso mais comum (n2 > n1), as lentes de bordas finas são convergentes e as lentes de bordas espessas são divergentes.
Se n2 < n1 os comportamentos ópticos das lentes se invertem, isto é, as lentes de bordas finas passam a ser divergentes e as de bordas espessas, convergentes.
As seis lentes apresentadas podem ter espessura bem menor do que os raios de curvaturas de suas faces. Neste caso, elas são chamadas lentes delgadas. Observe na figura a representação das lentes delgadas e cinco pontos importantes: os focos principais objeto e imagem (F e F’), cujas distâncias à lente são iguais a f, chamada distância focal; os pontos A e A’ denominados pontos anti-principais objeto e imagem, respectivamente. Eles estão situados a uma distância 2f da lente; do ponto O que é o centro óptico da lente.
No esquema abaixo realçamos os dois raios notáveis que incidem na lente delgada: um deles é paralelo ao eixo principal e emerge numa direção que passa pelo foco principal imagem F’ e o outro que incide numa direção que passa pelo foco principal F e emerge paralelamente ao eixo principal.
Convém destacar mais um raio notável: o que incide na lente passando pelo centro óptico O. Ele atravessa a lente sem sofrer desvio.
Exercícios básicos
Exercício 1:
Dispõem–se de duas lentes esféricas, uma biconvexa e outra bicôncava. Elas são de vidro (n2 = 1,5) e estão imersas no ar (n1 = 1). No que diz respeito a seus comportamentos ópticos, estas lentes são, respectivamente ___________________ e __________________. A seguir, as lentes são imersas num líquido de índice de refração nL = 1,6. Seus comportamentos ópticos se alteram. Elas passam a ser, respectivamente, _______________ e ____________________.
Quais são as palavras que preenchem as lacunas acima?
Exercício 2:
São divergentes as lentes de vidro imersas no ar:
a) Plano–convexa e plano-côncava
b) Biconvexa e bicôncava
c) Plano-côncava e convexo-côncava
d) Plano-convexa e bicôncava
Exercício 3:
Dos quatro esquemas apresentados indique os corretos.
Exercício 4:
Pretende-se acender um palito de fósforo com uma lente, utilizando raios solares. Que tipo de lente de vidro deve ser utilizada, de bordas finas ou bordas espessas? Em que ponto deve ser colocada a ponta do palito?
Exercício 5:
São dadas duas associações de lentes, com mesmo eixo principal. Um feixe de raios paralelos incide na lente L1 e emerge pela lente L2. Determine a distância d entre as lentes. Na situação (a) L1 e L2 têm a mesma distância focal f = 10 cm. Na situação (b) as distâncias focais de L1 e L2 são, respectivamente, 10 cm e 6 cm.
Exercício 1: resolução
Dispõem–se de duas lentes esféricas, uma biconvexa e outra bicôncava. Elas são de vidro (n2 = 1,5) e estão imersas no ar (n1 = 1). No que diz respeito a seus comportamentos ópticos, estas lentes são, respectivamente convergente e divergente. A seguir, as lentes são imersas num líquido de índice de
refração nL = 1,6. Seus comportamentos ópticos se alteram. Elas passam a ser, respectivamente divergente e convergente.
Respostas: convergente e divergente; divergente e convergente
Exercício 2: resolução
As lentes de vidro imersas no ar (n2 > n1) e de bordas espessas (bicôncava, plano-côncava e convexo-côncava) são divergentes.
Resposta: c
Exercício 3: resolução
São corretos os esquemas:
I) e IV): os dois raios que incidem na lente delgada paralelamente ao eixo principal emergem numa direção que passa pelo foco principal imagem F’, efetivamente na lente convergente (I) e através de prolongamentos na lente divergente (IV).
Respostas: I) e IV)
Exercício 4: resolução
A lente deve ser convergente e de bordas finas pois a lente é de vidro e está imersa no ar. Os raios emergentes se concentram no foco principal imagem F’. Neste ponto deve-se localizar a ponta do palito.
Respostas: bordas finas; no foco principal imagem F’
Exercício 5: resolução
a) d = f + f = 20 cm
b) d = f1 – f2 = 10 – 6 => d = 4 cm
Respostas: a) 20 cm; b) 4 cm
Nenhum comentário:
Postar um comentário